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Abstract— The challenging task of feature engineering in data mining is the dimensionality 

reduction to extract relevant attributes. Hence, the inherent analysis of data distribution based on 

its class label is essential for predicting the results. This research work contributes two machine 

learning models namely Wrapper based Discretized Naïve Bayes (WDN Bayes) and Filter based 

Discretized Naïve Bayes (FDN Bayes) using the supervised machine learning algorithms such as 

NB, KNN and DN Bayes that aims for identifying an optimal subclass of features from the 

collection of primary soil dataset based on chemical nutrients around Theni region to predict soil 

fertility by improving the classification accuracy. Extensive experiments on four different real-

time soil datasets were carried over to demonstrate the effectiveness of KNN embedded wrapper 

method and CFS+GA combined filter method using Discretized Naïve Bayes (DN Bayes). The 

model’s effectiveness is estimated with all the features and with the significant features obtained 

by the proposed feature extraction techniques. The experimental results of feature extraction 

approach profoundly satisfying in terms of error metrics and evaluation metrics in comparison 

with NB, KNN, SVM, DN Bayes, WDN Bayes and FDN Bayes by producing 91% and 92% of 

classification accuracy for WDN Bayes and FDN Bayes respectively. 

 

Keywords- Soil fertility, Crop yield Prediction, Soil Classification accuracy, Correlation filter, 

Wrapper approach and Feature extraction. 

1. Introduction: 

Machine Learning has ascended with a lot of processing techniques to develop new strategies in 

multi-disciplinary agricultural innovations. This leads to scale the performance of learning model 
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through feature extraction technique to determine the relevant subset of features using different 

statistical measures for building a model [1]. An approach that dealt with farm management using 

information technology is termed as Precision agriculture and also known as “Site-Specific 

Agriculture”. It assures whether the crops and soil receive their required nutrients for good health 

and profit [2]. Guaranteed productivity, manageability and environment conservation is the 

objective of precision agriculture [3]. Currently, more machine learning methods are developed 

significantly to enhance the agricultural needs efficiently and adjust to various natural changes [4]. 

In precision agriculture machine learning endows crop management system that assists in soil 

suitability for the good yield of crops, crop disease management, differentiating crop weeds, 

acknowledging crop assortments, forecasting of agricultural climate and so on [5]. As there is an 

enormous increase in the agricultural data, feature space can have irrelevant and redundant features 

and often generates a classifier that has poor performance and weak robustness [6]. The existing 

experiments demonstrate that redundant features affect the performance of classifiers and also the 

instance-based learners are sensitive to irrelevant features [7]. These problems can be solved by 

removing irrelevant and redundant features from the original feature space using effective feature 

selection method [8,9]. 

Feature subset selection is the process of removing irrelevant and redundant features and the 

identification of a feature subset that contains the most discriminative information from the original 

feature space [10]. In addition to the dimensionality reduction, feature selection enhances the 

generalization ability of the classifiers, facilitates data visualization, reduces the training time, 

improves the performance of the classifiers and help the biologists to identify the hidden biological 

 

mechanisms [11,12]. Subset generation module and an evaluator module are the two components 

of feature selection. The feature subset generation module exploits search strategies to generate 

candidate subsets, whereas the evaluator module measures the goodness of a subset. Feature 

selection methods are classified as filter, wrapper and embedded based on the involvement of 

evaluator in the classifier [13]. Filter method evaluate the quality of a feature or the subset of 

features by the essential properties of the training samples and flexible in combining with various 

combination of classifiers. It has better generalization ability and reduces the computational 

complexity. Wrapper method is specific to a given classifier and evaluate the quality of a candidate 

subset that tends to obtain better classification performance [14,15]. Embedded method is 

characterized by a deeper interaction between the feature selection and the construction of the 

classifier to generate the feature subsets. As wrapper method achieve better classification accuracy 

it is far more time consuming in actual use of data. It evaluates O(N2) candidate subset for N- 

feature dataset using sequential forward selection scheme that creates high time complexity and 

requires more CPU time [16,17,18]. To pacify this problem and enhance the process of feature 

selection, in this study, we investigated and proposed two feature engineering methods namely 

WDN Bayes and FDN Bayes based on wrapper approach and filter approach respectively. The 

proposed wrapper approach is embedded with KNN and proportional k-interval discretized Naïve 

Bayes classifiers named as WDN Bayes and the proposed filter approach utilize correlation-based 
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feature selection algorithm (CFS) for feature subset selection and optimized by genetic algorithm 

together with proportional k-interval discretized Naïve Bayes classifiers named as FDN Bayes. The 

effectiveness of proposed methods is tested on real-time soil datasets received from Rajashree 

Sugars and Chemicals Ltd., Periyakulam. The soil samples are collected from the surrounding 

lands of Theni region. The efficiency of proposed methods is experimentally validated and 

analyzed by comparing with the state-of-art feature selectors. 

The remainder of this paper is organized as follows. Section 2 comprises machine learning 

algorithm, section 3 & 4 describes the wrapper based proposed feature selection model, section 5 

& 6 discuss about the filter based proposed feature selection model, section 7 explains about the 

experimental results and discussion, finally section 8 concludes this feature engineering research 

work. 

2. K-Nearest Neighbor: 

KNN is a non-parametric learning algorithm applied for classification and regression in pattern 

recognition. It is a simple and efficient algorithm that exhibits time complexity of O(1) [19]. 

Various distance metrics are used to measure the distance between two instances according to the 

type of attribute. Consider, two instances based on attribute types x = (x1, x2, …….,xn) and y = 

(y1, y2, …….,yn) from the experimental samples. The distance between two instances based on 

attribute xj (1 ≤ j ≤ n) is calculated as follows. 

For categorical attributes, 

d (xj , yj) = 0, if (yj == xj) 

d (xj , yj) = 1, otherwise. 

For numerical attributes, Euclidean and Manhattan distances are the commonly used 

metrics. 

Euclidean Distance is d (xj , yj) = √ (xj - yj)
2 

Manhattan Distance is d (xj , yj) = |(xj - yj)| 

 

The distance D (xj , yj) between x and y in terms of Euclidean Distance is recursively defined as, 

D (xj  , yj)
2 = D (x1, x2, …….,xn-1 ; y1, y2, …….,yn-1)2 + d (xj , yj)

2 (1) 

To predict the class label of a new instance, KNN finds the k closest neighbors from the 

training set according to the distance metric and then assigns the dominant label among the k 

neighbors to the new instance. If k=1, the label of new instance is determined by its closest 

neighbor. KNN is commonly used as a standard classifier and integrated into the feature selection 

framework to evaluate the quality of a feature subset and compare the performance of different 

feature selection algorithms due to its effective implementation [20]. 

3. Feature Selection with Wrapper approach: 

Wrapper method integrates a classifier in the feature selection process to evaluate the quality of a 
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feature or a feature subset tends to attain better classification accuracy. Enumerating all of the 

possible combinations of feature subsets and evaluating them one by one is the simplest approach 

and guarantees optimal feature subset in the N number of features, while the computational 

complexity grows exponentially at O(N2) which exhibits high time complexity. This problem can be 

rectified to generate candidate feature subsets by commonly used search methods such as Step-

wise Forward Selection (SFS), Sequential Backward Selection (SBS), bidirectional search, 

sequential floating search, heuristic search and random search [21]. Even though various search 

strategies available SFS achieves better results with the quality of obtained feature subset. Starting 

from an empty set, SFS begins by selecting the feature that is most relevant to the target attribute 

as evaluated by a classifier and then searches for the next candidate feature that most contributes 

to the enhancement of the classification accuracy among the remaining features and continues with 

this process until there is no other candidate feature left over. Through this deterministic search 

strategy, the wrapper method evaluates only O ((S+1) N) candidate feature subsets with finally 

selected S features. Algorithm-1 depicts the pseudocode of SFS based on wrapper approach and 

Algorithm 2 shows the pseudocode of KNN embedded SFS based on wrapper approach. 

 

Algorithm-1: Step-wise Forward Selection (SFS) based on wrapper approach 

 

Input: Denoised Soil Dataset with Feature Set F & class label C 

Output: S; //Selected 

feature subset 1 acc = 

0; 

2 S = null; 

3 while(~is empty (F)) 

4 { 

5 flag = 0; 

6 for i = 1 to length(F) 

7 { 

8 Snew = add(copy(S), Fi); 

9 accnew = evaluate(classifier, Data SnewU{C}); 

10 if(accnew > acc) then 

11 x = i; 

12 acc = accnew; 

13 flag = 1; 

14 if(flag) then 

15 { 

16 S = add(S; Fx); 

17 F = del(F; Fx); 

18 } 

19 else 
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20 break; // stop feature selection 21 } 

22 return S; 

 

4. Enhanced Wrapper-Based SFS with Embedded KNN: 

In the process of evaluating a new feature subset a new KNN classifier is constructed each and 

every time as discussed in section 2. The final feature subsets are obtained incrementally by 

searching and evaluating the candidate feature subset in the wrapper-based SFS method. 

Construction of KNN classifier has no explicit training step whereas, all the computation deferred 

until the classification process gets completed. By comparing the distance between the test instance 

and all the training instances and then choosing the k nearest neighbors to determine the class label 

of the test instance. This leads to construct a distance matrix to maintain the distance between any 

two different instances in the soil dataset utilized of the experiment projected over the selected 

feature subset. Candidate feature can be evaluated incrementally constructed a new KNN classifier 

by adding a distance matrix on the candidate feature rather than calculating it with overall features. 

This works based on two approaches discussed as follows. 

Attribute distance matrix denoted as [Dt(Fi)] contains the distance between any two different 

instances in the experimental soil dataset projected over the predictive feature 

Fi ={F1, F2,……, Fi / 1 ≤ i ≤ n}. 

Classifier distance matrix denoted as (Dt) contains the distance between any two different 

instances in the experimental soil dataset projected over the feature subset 

S={S1, S2,……, Ss / 1 ≤ s ≤ n} in Fi. 

Each and every cell of the matrix stores the distance between any two instances and every row or 

column constitutes distance vector between the consecutive instances. This is represented in Fig-

1. The distance between two instances is incrementally updated by the squared Euclidian distance 

recorded in the matrix and ensures that KNN classifier is constructed incrementally along with the 

feature selection. In this matrix the k-closest instances of a test instance can be found by using the 

values stored directly as  it  is  non-negative  and  monotonically  increasing  along  with the feature 

selection. The classifier distance matrix Dt performs as a fast KNN classifier to conduct the cross 

validation for the experimental soil dataset projected over the selected features and also works 

together with the attribute distance matrix for the incremental construction of a new classifier when 

evaluating the next candidate feature. This approach enhances the Wrapper- Based Step-wise 

Forward Selection (SFS) method by embedding KNN classifier described in Algorithm-2. 

The quality of feature subset is evaluated by 10-fold cross validation on the classifier distance 

matrix rather than calculating the distance between the test instance and the remaining training 

instances. The attribute distance matrix Dt(Fi) is calculated for candidate feature Fi and then obtain 

a candidate classifier distance matrix (Dtnew) by adding Dt(Fi) to (Dt) and performed 10-fold cross 
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Dt(i,j) 

validation on (Dtnew) to evaluate the quality of the feature subset for each and every execution the 

feature Fi is added for achieving better accuracy to the selected subset by replacing (Dt) with the 

corresponding (Dtnew) and extends to select the next feature. The stop criterion is that all the 

features are selected into S or there is no enhancement in the classification accuracy while 

evaluating the remaining features. This is shown in Fig-2. 
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Fig-1: KNN classifier distance matrix 
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Fig-2: Feature Selection Process 
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Algorithm-2: KNN Embedded Wrapper-Based Step-wise Forward Selection (SFS) 

Input: Denoised Soil Dataset with Feature Set F & class label C 

Output: S; //Selected feature subset 

1 Dt = null; 

2 acc = 0; 

3 S = null; 

4 while(~is empty (F)) 

5 { 

6 flag = 0; 

7 for i = 1 to length(F) 

8 { 

9 Compute attribute distance matrix Dt(Fi); 

10 Dtnew = Dt + Dt(Fi); 

11 accnew = 10-fold cross validation on Dtnew; 

12 if (accnew > acc) then 

13 x = i; 

14 acc = accnew; 

15 flag = 1; 

16 Dtbest = Dtnew; 

17 if(flag) then 

18 { 

19 S = add (S; Fx); 

20 Dt = Dtnew; 

21 F = del (F; Fx); 

22 } 

23 else 

24 break; // stop feature selection 25 } 

26 return S; 

 

 

5. Correlation Based Feature Selector (CFS) – Filter Approach: 

Quality of feature subsets depends on statistical evaluation criteria in the filter approach for feature 

extraction. A relevant feature conforms to a class or predicts the class [22]. A characteristic feature 

(Xi) is observed to be pertinent if and only if there occurs some probability P(Xi) and y such that 

P(Xi = xi) > 0, 

P(Y = y | Xi = xi) ≠ P(Y = y) (2) 
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Along with insignificant features, the features which are exceedingly associated with one or more 

other features also to be removed in feature selection process. The features are specific tests that 

measure characteristics identified with the variable of importance. If the association among the 

individual feature and an extrinsic variable is recognize, and the inter relation among every pair of 

the features is given, then the association among the complicated test comprising of the total 

features and the extrinsic variable can be calculated as, 

 

 

where, xi and x defines the observed and average values of the features considered. yi and 

y defines the observed and average values of the dataset class. The association between a group 

and an external feature is an operation of the total number of individual characteristic features 

in the group. The above mention Pearson’s Coefficient formula is obtained by standardizing 

all the variable. It has been utilized in the correlation-based feature selection algorithm 

enabling the addition or deletion of one feature at a time. The following Algorithm-3 describes 

the feature selection procedure using CFS filter. 

 

Algorithm-3: Filter-Based Correlation Feature Selection 

Optimized using GA 

 

Input: 

Dtrain ← Training 

dataset P ← Predictor 

n ← No. of selected features 

Output: 

Fx ← Selected Feature Subset 

Optimized Feature Subset 

Begin: 

F0 = Ø; 

x = 1; 

while (|Fx| < n) do 

if ( |Fx| < n-1) then 

Fx = CFS (Fx-1, Dtrain, P) 

else 

Add the better feature f to Fx-

1 endif 

x = x + 1; 
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end while 

Fx is further optimized using GA 

End 

 
Predicting relevant features using Correlation based filters defines as, the higher the correlation 

among the individual and the extrinsic variable, the higher is the correlation among the combination 

and external variables and the lower the inter-correlation among the individual and the extrinsic 

variable, the lower is the correlation among the combination and extrinsic variable. The redundant 

features should be removed from the dataset for an effective prediction. 

6. Optimization of Reduced Feature Subset using Genetic Algorithm: 

Further, to improvise the prediction performance of the model, the reduced feature set thus 

obtained through CFS filter is passed on the next step for optimizing using Genetic algorithm. It is 

adopted to optimize the possible combination of certain number if attributes that best describe the 

soil dataset while maintaining higher classification rate. The initial population for feature selection 

is generated based on Information Gain and Information gain threshold values. 

The result of a combination of GA optimization and CFS filter approach as an induction 

algorithm is the set of significant attributes that provides high classification rate. The proportional 

k-interval discretized Naïve Bayes (DN Bayes) algorithm [23] is considered for the soil 

classification as fertile or non-fertile. However, with the implementation of loss function, the 

model is constructed to leverage the efficient of DN Bayes. 

7. Experimental Results and Discussion: 

Real-Time dataset of soil samples collected from Rajshree Sugars and Chemicals Ltd., Theni is 

taken for this research work. Sugarcane soil dataset is divided into training and testing samples 

with the ratio of 60% and 40% respectively. Test dataset with the size of 128 samples is utilized 

for this research work and experimental results are produced. Following 10 attributes namely, pH, 

EC, OC, N, P, K, S, Fe, Mn and Zn are considered. The Statistical report for soil attributes and the 

experimental results of proposed works DN Bayes and DNBQ in the preprocessing stage that are 

discussed in [23], carried over for the further prediction improvement through feature engineering 

approaches based on wrapper as WDN Bayes and filter as FDN Bayes. 

 

These proposed models WDN Bayes and FDN Bayes are implemented on 4 different real-

time soil datasets and the average of all the four results recorded. The predictive performance of 

these models is evaluated using various measures of evaluation that examined for our assessment 

are Kappa Statistics, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative 

Absolute Error (RAE), Root Relative Squared Error (RRSE) and evaluation metrics like True 

Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall, F1-Score, Receiver Operator 

Characteristic (ROC), number of samples classified and classification accuracy. 

 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

2886                                                                http://www.webology.org 

 

1.4 
 

1.2 
 

1 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0 

KS MAE RMSE RAE RRSE 

NB DNBayes DNBQ WDNBayes 

Error Metrics 

Table 1: Error Metrics for WDN Bayes 

Algorithms 

& 

Error Metrics 

 

NB 

 

DN 

Bayes 

 

DNBQ 

 

WDN 

Bayes 

 

KS 

 

0.0542 

 

0.6736 

 

0.7343 

 

0.8872 

 

MAE 

 

0.3992 

 

0.1979 

 

0.1924 

 

0.1541 

 

RMSE 

 

0.6265 
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0.3202 

 

0.2267 
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0.8222 
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0.3962 

 

0.3142 
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Figure 3: Error Metrics for WDNBayes 
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Table 2: Evaluation Metrics for WDN Bayes 

Algorithms 

& 

Evaluation Metrics 

 

NB 

 

DN 

Bayes 

 

DNBQ 

 

WDN 

Bayes 

TPR 0.602 0.842 0.872 0.945 

FPR 0.554 0.171 0.144 0.068 

Precision 0.627 0.842 0.872 0.948 

Recall 0.602 0.842 0.872 0.945 

F1-Score 0.489 0.842 0.872 0.945 

ROC 0.731 0.905 0.946 0.965 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Evaluation Metrics for DN Bayes 
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Table 3: Classification Accuracy for WDN Bayes 

Metrics 

& 

Algorithms 

No. of Samples 
Classification 

Accuracy (%) Correctly Classified 
Incorrectly 

Classified 

NB 78 50 61 

DN Bayes 109 19 85 

DNBQ 116 12 87 

WDN 

Bayes 

121 7 94 
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Figure 6: Classification Accuracy for WDN Bayes 

 

Experimental results of Kappa Statistics, Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE) and 

evaluation metrics like True Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall, F1-

Score, Receiver Operator Characteristic (ROC), number of samples classified and classification 

accuracy based on WDN Bayes are shown in (Table 1 - 3) also its graphical representation is shown 

in (Figure 3 – 6). The results reveal that WDN Bayes outperforms other existing algorithm NB and 

our previously proposed works DN Bayes and DNBQ by producing 94% of classification accuracy 

in a real-time dataset with 128 samples. 
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Figure 7: Error Metrics for FDN Bayes 
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Table 5: Evaluation Metrics for FDN Bayes 

Algorithms 

& 

Error 

Metrics 

 

NB 

 

DN 
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DNBQ 

 

WDN 

Bayes 

 

FDN 

Bayes 

 

TPR 

 

0.602 

 

0.842 

 

0.872 

 

0.945 

 

0.953 

 

FPR 

 

0.554 

 

0.171 

 

0.144 

 

0.068 
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Precision 

 

0.627 
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Recall 
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F1-Score 

 

0.489 
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Figure 8: Evaluation Metrics for FDN Bayes 

 

Table 6: Classification Accuracy for FDN Bayes 
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No. of Samples 
Classification 

Accuracy (%) 
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Incorrectly 

Classified 

NB 78 50 61 

DN Bayes 109 19 85 

DNBQ 116 12 87 

WDN Bayes 121 7 94 

FDN Bayes 122 6 95 
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Figure 10: Classification Accuracy for FDN Bayes 

 

Experimental results of Kappa Statistics, Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE) and evaluation 

metrics like True Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall, F1-Score, 

Receiver Operator Characteristic (ROC), classified samples and classification accuracy based on 

FDN Bayes are shown in (Table 4 - 6) also its graphical representation is shown in (Figure 7 - 10). 

The results reveal that FDN Bayes outperforms existing algorithm NB (61%) and our previously 

proposed works DN Bayes (85%), DNBQ (87%) and WDN Bayes (94%) by producing 95% of 

classification accuracy in a real-time dataset with 128 samples. In the FDN Bayes model the reduced 

feature subset obtained through CFS filter is further optimized using Genetic Algorithm and hence 

shows better improvement in classification accuracy over WDN Bayes model. 

8. Conclusion and Future Scope: 

Various methods are adopted for selecting relevant features in the soil dataset to predict and 

classify as fertile and non-fertile soil. The proposed methodologies WDN Bayes and FDN Bayes 

provide the promising results as 94% and 95% respectively in terms of classification accuracy 

whereas NB, DN Bayes and DNBQ give 61%, 85% and 87% of classification accuracy with all 

features. Experimental results obtained for real-time soil dataset of 128 testing samples and have 

been proved that FDN Bayes outperforms WDN Bayes with respect to the optimized feature subset 

using various evaluation metrics. A wrapper method is then enforced on the reduced subgroup of 
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features to find the feature set with high predictive accuracy. In spite of it the advantage of the CFS 

filter among the other filter methods is the significantly shorter computation time and one of the 

essential highlights is that it does not need any fine-tuning to obtain competing results. 

Experimental results also confirm that the developed filter-based feature extraction method FDN 

Bayes is superior to the other proposed model WDN Bayes and existing inbuilt feature selector 

methods. In addition, the efficiency of the results with fewer error measures shows improved 

prediction accuracy of the machine learning models. This supports soil scientists for decision 

making to help farmers in sugarcane cultivation. In future this work can be carried over by 

combining these models together for extracting relevant attributes to increase the classification 

accuracy. 
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